AUTISM ABSTRACT: Immunological characterization in children with autism spectrum disorders (ASD)

ABSTRACT I: Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study.

Authors: Jyonouchi H, et al. Show all Journal: J Neuroinflammation. 2012 Jan 7;9:4.

ABSTRACT:

INTRODUCTION: There exists a small subset of children with autism spectrum disorders (ASD) characterized by fluctuating behavioral symptoms and cognitive skills following immune insults. Some of these children also exhibit specific polysaccharide antibody deficiency (SPAD), resulting in frequent infection caused by encapsulated organisms, and they often require supplemental intravenous immunoglobulin (IVIG) (ASD/SPAD). This study assessed whether these ASD/SPAD children have distinct immunological findings in comparison with ASD/non-SPAD or non-ASD/SPAD children.

CASE DESCRIPTION: We describe 8 ASD/SPAD children with worsening behavioral symptoms/cognitive skills that are triggered by immune insults. These ASD/SPAD children exhibited delayed type food allergy (5/8), treatment-resistant seizure disorders (4/8), and chronic gastrointestinal (GI) symptoms (5/8) at high frequencies. Control subjects included ASD children without SPAD (N = 39), normal controls (N = 37), and non-ASD children with SPAD (N = 12).

DISCUSSION AND EVALUATION: We assessed their innate and adaptive immune responses, by measuring the production of pro-inflammatory and counter-regulatory cytokines by peripheral blood mononuclear cells (PBMCs) in responses to agonists of toll like receptors (TLR), stimuli of innate immunity, and T cell stimulants. Transcription profiling of PB monocytes was also assessed. ASD/SPAD PBMCs produced less proinflammatory cytokines with agonists of TLR7/8 (IL-6, IL-23), TLR2/6 (IL-6), TLR4 (IL-12p40), and without stimuli (IL-1ß, IL-6, and TNF-α) than normal controls. In addition, cytokine production of ASD/SPAD PBMCs in response to T cell mitogens (IFN-γ, IL-17, and IL-12p40) and candida antigen (Ag) (IL-10, IL-12p40) were less than normal controls. ASD/non-SPAD PBMDs revealed similar results as normal controls, while non-ASD/SPAD PBMCs revealed lower production of IL-6, IL-10 and IL-23 with a TLR4 agonist. Only common features observed between ASD/SPAD and non-ASD/SPAD children is lower IL-10 production in the absence of stimuli. Transcription profiling of PB monocytes revealed over a 2-fold up (830 and 1250) and down (653 and 1235) regulation of genes in ASD/SPAD children, as compared to normal (N = 26) and ASD/non-SPAD (N = 29) controls, respectively. Enriched gene expression of TGFBR (p < 0.005), Notch (p < 0.01), and EGFR1 (p < 0.02) pathways was found in the ASD/SPAD monocytes as compared to ASD/non-SPAD controls.

CONCLUSIONS: The Immunological findings in the ASD/SPAD children who exhibit fluctuating behavioral symptoms and cognitive skills cannot be solely attributed to SPAD. Instead, these findings may be more specific for ASD/SPAD children with the above-described clinical characteristics, indicating a possible role of these immune abnormalities in their neuropsychiatric symptoms.

Source : Division of Allergy/Immunology and Infectious Diseases, Department of pediatrics, UMDN-NJMS.

ABSTRACT II: Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome.

Ashwood P, et al.

Brain Behav Immun. 2011 Jan;25(1):40-5. Epub 2010 Aug 10.

Abstract
Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. A potential role for immune dysfunction has been suggested in ASD. To test this hypothesis, we investigated evidence of differential cytokine release in plasma samples obtained from 2 to 5 year-old children with ASD compared with age-matched typically developing (TD) children and children with developmental disabilities other than autism (DD). Participants were recruited as part of the population based case-control CHARGE (Childhood Autism Risks from Genetics and Environment) study and included: 97 participants with a confirmed diagnosis of ASD using standard assessments (DSM IV criteria and ADOS, ADI-R), 87 confirmed TD controls, and 39 confirmed DD controls. Plasma was isolated and cytokine production was assessed by multiplex Luminex™ analysis. Observations indicate significant increases in plasma levels of a number of cytokines, including IL-1β, IL-6, IL-8 and IL-12p40 in the ASD group compared with TD controls (p<0.04). Moreover, when the ASD group was separated based on the onset of symptoms, it was noted that the increased cytokine levels were predominantly in children who had a regressive form of ASD. In addition, increasing cytokine levels were associated with more impaired communication and aberrant behaviors. In conclusion, using larger number of participants than previous studies, we report significantly shifted cytokine profiles in ASD. These findings suggest that ongoing inflammatory responses may be linked to disturbances in behavior and require confirmation in larger replication studies. The characterization of immunological parameters in ASD has important implications for diagnosis, and should be considered when designing therapeutic strategies to treat core symptoms and behavioral impairments of ASD.

Source: Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA.

ABSTRACT III: Differential monocyte responses to TLR ligands in children with autism spectrum disorders.

Enstrom AM, et al.

Brain Behav Immun. 2010 Jan;24(1):64-71. Epub 2009 Aug 8.

Departments of Medical Microbiology and Immunology, University of California at Davis, CA 95817, USA.

Abstract
Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. Recent evidence has suggested that impairments of innate immunity may play an important role in ASD. To test this hypothesis, we isolated peripheral blood monocytes from 17 children with ASD and 16 age-matched typically developing (TD) controls and stimulated these cell cultures in vitro with distinct toll-like receptors (TLR) ligands: TLR 2 (lipoteichoic acid; LTA), TLR 3 (poly I:C), TLR 4 (lipopolysaccharide; LPS), TLR 5 (flagellin), and TLR 9 (CpG-B). Supernatants were harvested from the cell cultures and pro-inflammatory cytokine responses for IL-1beta, IL-6, IL-8, TNFalpha, MCP-1, and GM-CSF were determined by multiplex Luminex analysis. After in vitro challenge with TLR ligands, differential cytokine responses were observed in monocyte cultures from children with ASD compared with TD control children. In particular, there was a marked increase in pro-inflammatory IL-1beta, IL-6, and TNFalpha responses following TLR 2, and IL-1beta response following TLR 4 stimulation in monocyte cultures from children with ASD (p<0.04). Conversely, following TLR 9 stimulation there was a decrease in IL-1beta, IL-6, GM-CSF, and TNFalpha responses in monocyte cell cultures from children with ASD compared with controls (p<0.05). These data indicate that, monocyte cultures from children with ASD are more responsive to signaling via select TLRs. As monocytes are key regulators of the immune response, dysfunction in the response of these cells could result in long-term immune alterations in children with ASD that may lead to the development of adverse neuroimmune interactions and could play a role in the pathophysiology observed in ASD.

ABSTRACT IV: Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: mucosal immune activation and reduced counter regulatory interleukin-10.

Ashwood P, et al.

J Clin Immunol. 2004 Nov;24(6):664-73.

Abstract
A lymphocytic enterocolitis has been reported in a cohort of children with autistic spectrum disorder (ASD) and gastrointestinal (GI) symptoms. This study tested the hypothesis that dysregulated intestinal mucosal immunity with enhanced pro-inflammatory cytokine production is present in these ASD children. Comparison was made with developmentally normal children with, and without, mucosal inflammation. Duodenal and colonic biopsies were obtained from 21 ASD children, and 65 developmentally normal paediatric controls, of which 38 had signs of histological inflammation. Detection of CD3+ lymphocyte staining for spontaneous intracellular TNFalpha, IL-2, IL-4, IFNgamma, and IL-10, was performed by multicolor flow cytometry. Duodenal and colonic mucosal CD3+ lymphocyte counts were elevated in ASD children compared with noninflamed controls (p<0.03). In the duodenum, the proportion of lamina propria (LP) and epithelial CD3(+)TNFalpha+ cells in ASD children was significantly greater compared with noninflamed controls (p<0.002) but not coeliac disease controls. In addition, LP and epithelial CD3(+)IL-2+ and CD3(+)IFNgamma+, and epithelial CD3(+)IL-4+ cells were more numerous in ASD children than in noninflamed controls (p<0.04). In contrast, CD3(+)IL-10+ cells were fewer in ASD children than in noninflamed controls (p<0.05). In the colon, LP CD3(+)TNFalpha+ and CD3(+)IFNgamma+ were more frequent in ASD children than in noninflamed controls (p<0.01). In contrast with Crohn's disease and non-Crohn's colitis, LP and epithelial CD3(+)IL-10+ cells were fewer in ASD children than in nondisease controls (p<0.01). There was a significantly greater proportion of CD3(+)TNFalpha+ cells in colonic mucosa in those ASD children who had no dietary exclusion compared with those on a gluten and/or casein free diet (p<0.05). There is a consistent profile of CD3+ lymphocyte cytokines in the small and large intestinal mucosa of these ASD children, involving increased pro-inflammatory and decreased regulatory activities. The data provide further evidence of a diffuse mucosal immunopathology in some ASD children and the potential for benefit of dietary and immunomodulatory therapies.

Source: Centre for Paediatric Gastroenterology, Royal Free and University College Medical School, London, United Kingdom.

ABSTRACT V: Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms.

Ashwood P, et al.

J Neuroimmunol. 2006 Apr;173(1-2):126-34. Epub 2006 Feb 21.

Abstract
Gastrointestinal pathology, characterized by lymphoid nodular hyperplasia and entero-colitis, has been demonstrated in a cohort of children with autistic spectrum disorder (ASD). Systemic and intestinal mucosal immune dysregulation was assessed in ASD children with gastrointestinal (GI) symptoms (n = 18), and typically developing controls (n = 27), including non-inflamed controls (NIC) and inflamed GI control children with Crohn’s disease (CD), by analysis of intracellular cytokines in CD3+ lymphocytes. In both peripheral blood and mucosa, CD3+ TNFalpha+ and CD3+ IFNgamma+ were increased in ASD children compared with NIC (p < 0.004) and reached levels similar to CD. In contrast, peripheral and mucosal CD3+ IL-10+ were markedly lower in ASD children with GI symptoms compared with both NIC and CD controls (p < 0.02). In addition, mucosal CD3+ IL-4+ cells were increased (p < 0.007) in ASD compared with NIC. There is a unique pattern of peripheral blood and mucosal CD3+ lymphocytes intracellular cytokines, which is consistent with significant immune dysregulation, in this ASD cohort.

Source: Department of Medical Microbiology and Immunology, University of California at Davis, M.I.N.D. Institute,

Provided by

CHILDREN ALLERGY CLINIC ONLINE

Yudhasmara Foundation htpp://www.allergyclinic.wordpress.com/

WORKING TOGETHER FOR STRONGER, SMARTER AND HEALTHIER CHILDREN BY EDUCATION, CLINICAL INTERVENTION, RESEARCH AND INFORMATION NETWORKING. Advancing of the future pediatric and future parenting to optimalized physical, mental and social health and well being for fetal, newborn, infant, children, adolescents and young adult

LAYANAN KLINIK KHUSUS “CHILDREN GRoW UP CLINIC”

PROFESIONAL MEDIS “CHILDREN GRoW UP CLINIC”

  • Dr Narulita Dewi SpKFR, Physical Medicine & Rehabilitation
  • Dr Widodo Judarwanto SpA, Pediatrician
  • Fisioterapis

Clinical and Editor in Chief :

Dr Widodo Judarwanto, pediatrician email : judarwanto@gmail.com, Curiculum Vitae

Information on this web site is provided for informational purposes only and is not a substitute for professional medical advice. You should not use the information on this web site for diagnosing or treating a medical or health condition. You should carefully read all product packaging. If you have or suspect you have a medical problem, promptly contact your professional healthcare provider.

Copyright © 2012, Children Allergy Clinic Online Information Education Network. All rights reserved

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s