References Gastrointestinal Allergy and Hypersensitivities

Gastrointestinal food allergies are not rare in infants and children. Symptoms include vomiting, reflux, abdominal pains, diarrhea and constipation. Gastrointestinal food allergies are a spectrum of disorders that result from adverse immune responses to dietary antigens. The named disorders include immediate gastrointestinal hypersensitivity (anaphylaxis), oral allergy syndrome, allergic eosinophilic esophagitis, gastritis, and gastroenterocolitis; dietary protein enterocolitis, proctitis, and enteropathy; and celiac disease. Additional disorders sometimes attributed to food allergy include colic, gastroesophageal reflux, and constipation.

Gastrointestinal food allergies may be defined as clinical syndromes which are characterised by the onset of gastrointestinal symptoms following food ingestion where the underlying mechanism is an immunologically mediated reaction within the gastrointestinal tract. These gastrointestinal symptoms, principally vomiting and diarrhoea, sometimes abdominal colic, may be accompanied by other symptoms outside the alimentary tract. The clinical spectrum of these disorders ranges from acute anaphylaxis (rarely leading to death in infancy) to relatively minor symptoms which are difficult to distinguish from other disorders such as toddler’s diarrhoea or psychologic disorders. The same food, e.g. cow’s milk, may produce a wide range of clinical manifestations. In the one individual, clinical features may change with age. The incidence of gastrointestinal food allergic disease is greatest in the first year of life and decreases with age. There are, broadly speaking, two categories of clinical syndromes which are related to speed of onset of symptoms: immediate and delayed. Those syndromes which manifest immediately after food ingestion are usually easy to diagnose and specific IgE tests and skin prick tests are frequently positive. Those which have a delayed onset of up to several days are difficult to diagnose, and currently available investigations may be unsatisfactory for routine use. In current clinical practice, gastrointestinal syndromes which can be manifestations of food allergy, may be grouped as follows: 1) immediate syndromes, including anaphylaxis and b) acute vomiting +/- diarrhoea in association with cutaneous and respiratory manifestations; and 2) delayed syndromes, including a) food-sensitive small intestinal enteropathies, b) food-sensitive colitis, c) multiple food allergy +/- enteropathy, and d) infantile colic.

Clinical diagnosis requires the exclusion of nonimmunologic diseases that have similar gastrointestinal symptoms. In food allergy, the immune reactions involved can be immunoglobulin (Ig)E-mediated, cell-mediated or both. Symptoms in other target organs are common in cases of IgE-mediated disorders, but not in the cell-mediated disorders in which symptoms are usually localized to the gut. Diagnosis utilizes detailed medical history, clinical evaluation, skin testing, food-specific IgE antibodies, responses to elimination diet and oral food challenges. Endoscopic biopsies are essential in cell-mediated disorders and allergic eosinophilic gastropathies. Treatment includes avoidance of the offending food by a restriction diet in children and the use of hydrolyzed or amino acid-based formulas in young infants. Topical and/or systemic corticosteroids can also be used in eosinophilic esophagitis.

The pediatrician faces several challenges in dealing with these disorders because diagnosis requires differentiating allergic disorders from many other causes of similar symptoms, and therapy requires identification of causal foods, application of therapeutic diets and/or medications, and monitoring for resolution of these disorders.

References

  • Sampson HA: Food allergy. J. Allergy Clin. Immunol. 111(2 Suppl.), S540-S547 (2003).
  • Sampson HA: Update on food allergy. J. Allergy Clin. Immunol. 113(5), 805-819 (2004).
  • Sicherer SH, Teuber S: The Adverse Reactions to Food Committee. Current approach to the diagnosis and management of adverse reactions to food. J. Allergy Clin. Immunol. 114, 1146-1150 (2004).
  • Sampson HA, Anderson JA. Summary and recommendations: Classifi cation of gastrointestinal manifestations due to immunologic reactions to foods in infants and young children. J Pediatr Gastroenterol Nutr. 2000;30:S87-94.
  • Sicherer SH: Clinical aspects of gastrointestinal food allergy in childhood. Pediatrics 111(6 Pt 3), 1609-1616 (2003).
  • Heine RG: Pathophysiology, diagnosis and treatment of food protein-induced gastrointestinal diseases. Curr. Opin. Allergy Clin. Immunol. 4(3), 221-229 (2004).
  • Sicherer SH: Food allergy. Lancet 360(9334), 701-710 (2002).
  • Bock SA. Prospective appraisal of complaints of adverse reactions to foods in children during the 3 years of life. Pediatrics 1987;79:683-8.
  • Sampson HA. Food Allergy. Part 1: immunopathogenesis and clinical disorders. J Allergy Clin Immunol 1999;103: 717-28.
  • Sampson HA. Food Allergy. Part 2: diagnosis and management. J Allergy Clin Immunol 1999;103: 981-99.
  • Odze, RD, Wershil, BK, Leichtner, AM, and Antonioli, DA. Allergic colitis in infants. J Pediatr. 1995; 126: 163–170
  • Furuta, GT. Eosinophils in the esophagus: acid is not the only cause. J Pediatr Gastroenterol Nutr. 1998; 26: 468–471
  • Fox, VL, Nurko, S, and Furuta, GT. Eosinophilic esophagitis: It’s not just kid’s stuff. Gastrointest Endosc. 2002; 56: 260–270
  • Rothenberg, ME, Mishra, A, Collins, MH, and Putnam, PE. Pathogenesis and clinical features of eosinophilic esophagitis. J Allergy Clin Immunol. 2001; 108: 891–894
<li><span class="reference"><span class="refAuthors">Walsh, RE and Gaginella, TS. </span><span class="refTitle">The eosinophil in inflammatory bowel disease. </span><span class="refSeriesTitle">Scand J Gastronenterol</span>. <span class="refSeriesDate">1991</span>; <span class="refSeriesVolume">26</span>: <span class="refPages">1217–1224</span></span></li>
<li><span class="reference"><span class="refAuthors">Sarin, SK, Malhotra, V, Sen Gupta, S, Karol, A, Gaur, SK, and Anand, BS. </span><span class="refTitle">Significance of eosinophil and mast cell counts in rectal mucosa in ulcerative colitis. A prospective controlled study. </span><span class="refSeriesTitle">Dig Dis Sci</span>. <span class="refSeriesDate">1978</span>; <span class="refSeriesVolume">32</span>: <span class="refPages">363–367</span></span></li>
<li>Martín-Estaban M, Polanco I. Enfermedades alérgicas inducidas por alimentos no exclusivamente mediadas por IgE. Alergol Inmunol Clin. 2001;16 (Extraordinario Núm 2):79-94.</li>
<li>Van Sickle GJ, Powell GK, McDonald PJ, Goldblum RM. Milk and soy protein induced enterocolitis: evidence for lymphocyte sensitization to specifi c food proteins. Gastroenterology. 1985;88:1915-21.

Medline

  • Hoffman KM, Ho DG, Sampson HA. Evaluation of the usefulness of lymphocyte proliferation assays in the diagnosis of allergy to cow’s milk. J Allergy Clin Immunol. 1997;99:360-6.
    Medline
  • Heyman M, Darmon N, Dupont C, Dugas B, Hirribaren A, Blaton MA, et al. Mononuclear cells from infants allergic to cow’s milk secret tumor necrosis factor alpha, altering intestinal function. Gastroenterology. 1994;106:1514-23.
  • Benlounes N, Candal C, Matarazzo P, Dupont C, Heyman M. The time-course of milk antigen-induced TNF-alpha secretion differs according to the clinical symptoms in children with cow’s milk allergy. J Allergy Clin Immunol. 1999;104:863-9.
  • Chung HL, Hwang JB, Park JJ, Kim SG. Expression of transforming growth factor 1, transforming growth factor type I and II receptors, and TNF- in the mucosa of the small intestine in infants with food protein-induced enterocolitis syndrome. J Allergy Clin Immunol. 2002;109:150-4.
  • Savilahti E. Food-induced malabsorption syndromes. J Perdiatr Gastroentrol Nutr. 2000;30:S61-S66.
  • Rubin M. Allergic intestinal bleeding in the newborn. Amer J Med Sci. 1940;200:385.
  • Gryboski JD, Burkle F, Hillman R. Milk induced colitis in an infant. Pediatrics. 1966;38:299-306.
  • Gryboski JD. Gastrointestinal milk allergy in infants. Pediatrics. 1967;40:354-62.
  • Armisen A, Sancho B, Almaraz E, Prieto G, Polanco I. Colitis inducida por alergeno alimentario. Presentación de 20 casos. An Esp Pediatr. 1996;44:21-4.
  • Sicherer SH. Enterocolitis, proctocolitis, and enteropathy. In: Leung DYM, Sampson HA, Geha RS, Szefl er SJ, editors. Pediatric Allergy: Principles and practice. St Louis, MO: Mosby; 2003. p. 510-7.
  • Maloney J, Nowak-Wegrzyn A. Educational clinical case series for pediatric allergy and immunology: Allergic proctocolitis, food protein-induced enterocolitis syndrome and allergic eosinophilic gastroenteritis with protein-losing gastroenteropathy as manifestations of non-IgE-mediated cow’s milk allergy. Pediatr Allergy Immunol. 2007;18:360-7.
  • Pumberger W, Pomberger G, Geissler W. Proctocolitis in breast fed infants: a contribution to differential diagnosis of hematochesia in early childhood. Postgrad Med J. 2001;77:252-4.
  • Machida HM, Catto-Smith AG, Gall DG, Trevenen C, Scott RB. Allergic colitis in infancy: clinical and pathologic aspects. J Pediatr Gastroenterol Nutr. 1994;19:22-6.
  • Sierra C, Blasco J, Olivares L, Barco A. Del Río L. Colitis alérgica en lactantes exclusivamente amamantados al pecho. An Pediatr. 2006;64:58-61.
  • Kilshaw PJ, Cant AJ. The passage of maternal dietary proteins into human breast milk. Int Arch Allergy Appl Immunol. 1984;75:8-15.
  • Odze RD. Wershil BK, Leichtner AM, et al. Allergic colitis in infants. J Pediatr. 1995;126:163-70.
  • .Xantacos SA, Schwimmer JB, Melón-Aldana H, Rothenberg ME, Witte DP, Cohen MB. J Pediatric Gastroenterol Nutr. 2005;41:16-22.
  • Lake AM. Food-induced eosinophilic proctocolitis. J Pediatric Gastroenterol Nutr. 2000;30:S58-S60.
  • Sicherer SH, Eigenmann PA, Sampson HA. Clinical features of food protein-induced enterocolitis syndrome. J Pediatr. 1998; 133:214-9.
  • Vitoria JC, Camarero C, Sojo A, Ruiz A, Rodríguez-Soriano J. Enteropathy related to fi sh, rice and chicken. Arch Dis Child. 1982; 57:44-8.
  • Cavataio F, Carroccio A, Montalto G, Iacono G. Isolated rice intolerance: clinical and immunological fi ndings in four infants. J Pediatr. 1996;128:558-60.
  • García-Careaga M, Kerner Jr JA. Gastrointestinal manifestations of food allergies in pediatric patients. Nutr Clin Practice. 2005; 20:526-35.
  • Nowak-Wegrzyn A, Sampson HA, Wood RA, Shicherer SH. Food protein-induced enterocolitis syndrome caused by solid food proteins. Pediatrics. 2003;111:829-35.
  • Sicherer SH. Food protein-induced enterocolitis syndrome: Clinical perspectives. J Pediatric Gastroenterol Nutr. 2000;30:1.
  • .Sicherer SH. Food protein-induced enterocolitis syndrome: Case presentations and management lessons. J Allergy Clin Immunol. 2005;115:149-56.
  • Murray KF, Christie DL. Dietary protein intolerance in infants with transient methemoglobinemia and diarrhea. J Pediatr. 1993; 122:90-2.
  • Vanderhoof JA, Murray ND, Kaufman SS, et al. Intolerance to protein hydrolisate infant formulas: An underrecognized cause of gastrointestinal symptoms in infants. J Pediatr. 1997;131:741-4.
  • Sicherer SH. Clinical aspects of gastrointestinal food allergy I childhood. Pediatrics. 2003;111:1609-16.
  • Vanderhoff JA, Rosemary JY. Allergic disorder of the gastrointestinal tract. Current Opin Clin Nutr Metab Care. 2001;4:553-6.
  • Kondo M, Fukao T, Omoya K, Kawamoto N, Aoki M, Teramoto T, Kaneko H, Kondo N. Protein-Losing enteropathy associated with egg allergy in a 5-month-old boy. J Investig Allergol Clin Immunol. 2008;18(1):63-6.
  • Walter-Smith JA. Cow milk-sensitive enteropathy: predisposing factors and treatment. J Pediatric. 1992;121:S11-S115.
  • Maluenda C, Philips AD, Briddon A, Walker-Smith JA. Quantitative analysis of small intestinal mucosa in cow’s milk-sensitive enteropathy. J Pediatr Gastroenterol Nutr. 1984;3:349-56.
  • Heine RG. Pathophysiology, diagnosis and treatment of food protein-induced gastrointestinal diseases. Curr Opin Allergy Clin Inmunol. 2004;4(3):221-9.
  • Dvorak, AM. Ultrastructural evidence for release of major basic protein-containing crystalline cores of eosinophil granules in vivo: cytotoxic potential in Crohn’s disease. J Immunol. 1980; 125: 460–462
  • Winter, HS, Madara, JL, Stafford, RJ, Grand, RJ, Quinlan, JE, and Goldman, H. Intraepithelial eosinophils: a new diagnostic criterion for reflux esophagitis. Gastroenterology. 1982; 83: 818–823
  • Liacouras, CA, Wenner, WJ, Brown, K, and Ruchelli, E. Primary eosinophilic esophagitis in children: successful treatment with oral corticosteroids. J Pediatr Gastroenterol Nutr. 1998; 26: 380–385
  • Brown, LF, Goldman, H, and Antonioli, DA. Intraepithelial eosinophils in endoscopic biopsies of adults with reflux esophagitis. Am J Surg Pathol. 1984; 8: 899–905
  • Rothenberg, ME, Mishra, A, Brandt, EB, and Hogan, SP. Gastrointestinal eosinophils. Immunol Rev. 2001; 179: 139–155
  • Rothenberg, ME, Mishra, A, Brandt, EB, and Hogan, SP. Gastrointestinal eosinophils in health and disease. Adv Immunol. 2001; 78: 291–328
  • Moon, A and Kleinman, RE. Allergic gastroenteropathy in children. Ann Allergy Asthma Immunol. 1995; 74: 5–12
  • Saavedra-Delgado, AM and Metcalfe, DD. Interactions between food antigens and the immune system in the pathogenesis of gastrointestinal diseases. Ann Allergy. 1985; 55: 694–702
  • Torpier, G, Colombel, JF, Mathieu-Chandelier, C et al. Eosinophilic gastroenteritis: ultrastructural evidence for a selective release of eosinophil major basic protein. Clin Exp Immunol. 1988; 74: 404–408
  • Keshavarzian, A, Saverymuttu, SH, Tai, PC, Thompson, M, Barter, S, and Spry, CJ. Activated eosinophils in familial eosinophilic gastroenteritis. Gastroenterology. 1985; 88: 1041–1049
  • Bruijnzeel KC, Ortolani C, Aas K et al.: Adverse reactions to food. European academy of allergology and clinical immunology subcommittee. Allergy 50, 623-635 (1995).
  • Almot PL, Kemeny DM, Zachary C, Parkes P, Lessof MH: Oral allergy syndrome (OAS): symptoms of Ig-E mediated hypersensitivity to food. Clin. Allergy 17(1), 33-42 (1987).
  • Sicherer SH, Sampson HA: Food allergy. J. Allergy Clin. Immunol. 117(2 Suppl.), S470-S475 (2006).
  • Assa’ad AH: Gastrointestinal food allergy and intolerance. Pediatr. Ann. 35(10), 718-726 (2006).
  • Ortolani C, Ispano M, Pastorello EA, Ansaloni R, Magri GC: Comparison of results of skin prick tests (with fresh foods and commercial food extracts) and RAST in 100 patients with oral allergy syndrome. J. Allergy Clin. Immunol. 83(3), 683-690 (1989).
  • Pratt CA, Demain JG, Rathkopf MM: Food allergy and eosinophilic gastrointestinal disorders: guiding our diagnosis and treatment. Curr. Probl. Pediatr. Adolesc. Health Care. 38(6), 170-188 (2008).
  • Liacouras CA: Eosinophilic esophagitis. Gastroenterol. Clin. North Am. 37(4), 989-998 (2008).
  • Furuta GT, Liacouras CA, Collins MH et al.: Eosinophilic esophagitis in children and adults: a systematic review and consensus recommendations for diagnosis and treatment. Gastroenterology 133(4), 1342-1363 (2007).
  • Spergel JM, Brown-Whitehorn TF, Beausoleil JL et al.: 14 years of eosinophilic esophagitis: clinical features and prognosis. J. Pediatr. Gastroenterol. Nutr. 48(1), 30-36 (2009).
  • Rothenberg ME: Eosinophilic gastrointestinal disorders (EGID). J. Allergy Clin. Immunol. 113(1), 11-28 (2004).
  • Matsushita M, Hajiro K, Morita Y, Takakuwa H, Suzaki T: Eosinophilic gastroenteritis involving the entire digestive tract. Am. J. Gastroenterol. 90(10), 1868-1870 (1995).
  • Uenishi T, Sakata C, Tanaka S et al.: Eosinophilic enteritis presenting as acute intestinal obstruction: a case report and review of the literature. Dig. Surg. 20(4), 326-329 (2003).
  • Siahanidou T, Mandyla H, Dimitriadis D, Van-Vliet C, Anagnostakis D: Eosinophilic gastroenteritis complicated with perforation and intussusception in a neonate. J. Pediatr. Gastroenterol. Nutr. 32(3), 335-337 (2001).
  • Tran D, Salloum L, Tshibaka C, Moser R: Eosinophilic gastroenteritis mimicking acute appendicitis. Am. Surg. 66(10), 990-992 (2000).
  • Spergel JM, Beausoleil JL, Mascarenhas M, Liacouras CA: The use of skin prick tests and patch tests to identify causative foods in eosinophilic esophagitis. J. Allergy Clin. Immunol. 109(2), 363-368 (2002).
  • Liacouras CA, Spergel JM, Ruchelli E et al.: Eosinophilic esophagitis: a 10-year experience in 381 children. Clin. Gastroenterol. Hepatol. 3(12), 1198-1206 (2005).
  • Sicherer SH, Eigenmann PA, Sampson HA: Clinical features of food protein-induced enterocolitis syndrome. J. Pediatr. 133(2), 214-219 (1998).
  • Lake AM: Food-induced eosinophilic proctocolitis. J. Pediatr. Gastroenterol. Nutr. 30(Suppl.), S58-S60 (2000).
  • Benlounes N, Candalh C, Matarazzo P, Dupont C, Heyman M: The time-course of milk antigen-induced TNF-α secretion differs according to the clinical symptoms in children with cow’s milk allergy. J. Allergy Clin. Immunol. 104(4 Pt 1), 863-869 (1999).
  • Sicherer SH: Food protein-induced enterocolitis syndrome: case presentations and management lessons. J. Allergy Clin. Immunol. 115(1), 149-156 (2005).
  • Gupta SK: Is colic a gastrointestinal disorder? Curr. Opin. Pediatr. 14(5), 588-592 (2002).
  • Heine RG: Gastroesophageal reflux disease, colic and constipation in infants with food allergy. Curr. Opin. Allergy Clin. Immunol. 6(3), 220-225 (2006).
  • Lucassen PL, Assendelft WJ, van Eijk JT et al.: Systematic review of the occurrence of infantile colic in the community. Arch. Dis. Child. 84(5), 398-403 (2001).
  • Hill DJ, Hosking CS: Infantile colic and food hypersensitivity. J. Pediatr. Gastroenterol. Nutr. 30(Suppl.), S67-S76 (2000).
  • Gryboski JD. Gastrointestinal milk allergy in infants. Pediatrics 40(3), 354—362 (1967).
  • Burks AW, Casteel HB, Fiedorek SC, Williams LW, Pumphrey CL. Prospective oral food challenge study of two soybean protein isolates in patients with possible milk or soy protein enterocolitis. Pediatr. Allergy Immunol. 5(1), 40—45 (1994).
  • Powell GK. Milk- and soy-induced enterocolitis of infancy. Clinical features and standardization of challenge. J. Pediatr. 93(4), 553—560 (1978).
    • The first large study describing clinical features of food protein-induced enterocolitis syndrome (FPIES) patients. Proposed diagnostic criteria that are still used in clinical practice today.
  • Powell GK. Enterocolitis in low-birth-weight infants associated with milk and soy protein intolerance. J. Pediatr. 88(5), 840—844 (1976).
  • Sicherer SH. Food protein-induced enterocolitis syndrome: clinical perspectives. J. Pediatr. Gastroenterol. Nutr. 30(Suppl.), S45—S49 (2000).
  • Sicherer SH, Eigenmann PA, Sampson HA. Clinical features of food protein-induced enterocolitis syndrome. J. Pediatr. 133(2), 214—219 (1998).
  • Mehr S, Kakakios A, Frith K, Kemp AS. Food protein-induced enterocolitis syndrome: 16-year experience. Pediatrics 123(3), e459—e464 (2009).
    • One of the largest clinical studies on FPIES, including 35 patients experiencing 66 episodes of FPIES. Provides an overview of the clinical and biological characteristics of these patients.
  • Powell GK. Food protein-induced enterocolitis of infancy: differential diagnosis and management. Compr. Ther. 12(2), 28—37 (1986).
  • Muñoz-Furlong A, Sampson HA, Sicherer SH. Prevalence of self-reported seafood allergy in U.S. (abstract). J Allergy Clin Immunol. 2004;113(suppl):S100.
  • Sicherer SH, Muñoz-Furlong A, Sampson HA. Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: a 5-year follow-up study. J Allergy Clin Immunol. 2003;112:1203-7.
  • Alergológica 2005. Factores epidemiológicos, clínicos y socioeconómicos de las enfermedades alérgicas en España en 2005. Madrid: Luzán SA, 2006
  • Johansson SG.O, Hourihane JO’B, Bousquet J, Bruijnzeel-Koomen C, Dreborg S, Haahtela T, Kowalski ML, Mygind N, Ring J, van Cauwenberge P, van Hage-Hamsten M, Wüthrich B. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy. 2001;56:813-24.
  • Bischoff S, Crowe SE. Gastrointestinal food allergy: New insights into pathophysiology and clinical perspectives.Gastroenterology. 2005;128:1089-113.
  • McDonald PJ, Goldblum RM, Van Sickle GJ, Powell GK. Food protein-induced enterocolitis: altered antibody response to ingested antigen. Pediatr. Res. 18(8), 751—755 (1984).
    • An alteration in humoral responses in FPIES patients was demonstrated in this study. Demonstrated an increase in specific IgA in patients with a positive oral food challenge compared with negative controls.
  • Sampson HA, Anderson JA. Summary and recommendations: classification of gastrointestinal manifestations due to immunologic reactions to foods in infants and young children. J. Pediatr. Gastroenterol. Nutr. 30(Suppl.), S87—S94 (2000).
    •• Clarified and proposed a classification of food protein-induced gastrointestinal diseases.
  • Sicherer SH. Clinical aspects of gastrointestinal food allergy in childhood. Pediatrics 111(6 Pt 3), 1609—1616 (2003).
  • Lake AM. Dietary protein enterocolitis. Curr. Allergy Rep. 1(1), 76—79 (2001).
  • Nowak-Wegrzyn A, Muraro A. Food protein-induced enterocolitis syndrome. Curr. Opin. Allergy Clin. Immunol. 9(4), 371—377 (2009).
  • Lake AM. Food-induced eosinophilic proctocolitis. J. Pediatr. Gastroenterol. Nutr. 30(Suppl.), S58—S60 (2000).
  • Katz Y, Goldberg MR, Rajuan N, Cohen A, Leshno M. The prevalence and natural course of food protein induced enterocolitis syndrome to cow’s milk: a large-scale prospective population-based study. J. Allergy Clin. Immunol. 127(3), 647—653 (2011).
  • Monti G, Castagno E, Alfonsina Liguori S et al. Food protein-induced enterocolitis syndrome by cow’s milk proteins passed through breast milk. J. Allergy Clin. Immunol. 127(3), 679—680 (2011).
  • Nowak-Wegrzyn A, Sampson HA, Wood RA, Sicherer SH. Food protein-induced enterocolitis syndrome caused by solid food proteins. Pediatrics 111(4 Pt 1), 829—835 (2003).
    • Describes clinical characteristics of 14 infants with FPIES caused by solid foods and compared them with a control group of patients with FPIES caused by cow’s milk and/or soy.
  • Jarvinen KM, Makinen-Kiljunen S, Suomalainen H. Cow’s milk challenge through human milk evokes immune responses in infants with cow’s milk allergy. J. Pediatr. 135(4), 506—512 (1999).
  • Sicherer SH. Food protein-induced enterocolitis syndrome: case presentations and management lessons. J. Allergy Clin. Immunol. 115(1), 149—156 (2005).
  • Lin XP, Magnusson J, Ahlstedt S et al. Local allergic reaction in food-hypersensitive adults despite a lack of systemic food-specific IgE. J. Allergy Clin. Immunol. 109(5), 879—887 (2002).
  • Hojsak I, Kljaic-Turkalj M, Misak Z, Kolacek S. Rice protein-induced enterocolitis syndrome. Clin. Nutr. 25(3), 533—536 (2006).
  • Gray HC, Foy TM, Becker BA, Knutsen AP. Rice-induced enterocolitis in an infant: TH1/TH2 cellular hypersensitivity and absent IgE reactivity. Ann. Allergy Asthma Immunol. 93(6), 601—605 (2004).
  • Levy Y, Danon YL. Food protein-induced enterocolitis syndrome — not only due to cow’s milk and soy. Pediatr. Allergy Immunol. 14(4), 325—329 (2003).
  • Cavataio F, Carroccio A, Montalto G, Iacono G. Isolated rice intolerance: clinical and immunologic characteristics in four infants. J. Pediatr. 128(4), 558—560 (1996).
  • Murray KF, Christie DL. Dietary protein intolerance in infants with transient methemoglobinemia and diarrhea. J. Pediatr. 122(1), 90—92 (1993).
  • Anand RK, Appachi E. Case report of methemoglobinemia in two patients with food protein-induced enterocolitis. Clin. Pediatr. (Phila.) 45(7), 679—682 (2006).
  • Ikola RA. Severe intestinal reaction following ingestion of rice. Am. J. Dis. Child. 105, 281—284 (1963).
  • Jayasooriya S, Fox AT, Murch SH. Do not laparotomize food-protein-induced enterocolitis syndrome. Pediatr. Emerg. Care. 23(3), 173—175 (2007).
  • Mehr SS, Kakakios AM, Kemp AS. Rice: a common and severe cause of food protein-induced enterocolitis syndrome. Arch. Dis. Child. 94(3), 220—223 (2009).
  • Bietz JA. Cereal prolamin evolution and homology revealed by sequence analysis. Biochem. Genet. 20(11—12), 1039—1053 (1982).
  • Halpin TC, Byrne WJ, Ament ME. Colitis, persistent diarrhea, and soy protein intolerance. J. Pediatr. 91(3), 404—407 (1977).
  • Fontaine JL, Navarro J. Small intestinal biopsy in cows milk protein allergy in infancy. Arch. Dis. Child. 50(5), 357—362 (1975).
  • Goldman H, Proujansky R. Allergic proctitis and gastroenteritis in children. Clinical and mucosal biopsy features in 53 cases. Am. J. Surg. Pathol. 10(2), 75—86 (1986).
  • Jenkins HR, Pincott JR, Soothill JF, Milla PJ, Harries JT. Food allergy: the major cause of infantile colitis. Arch. Dis. Child. 59(4), 326—329 (1984).
  • Coello-Ramirez P, Larrosa-Haro A. Gastrointestinal occult hemorrhage and gastroduodenitis in cow’s milk protein intolerance. J. Pediatr. Gastroenterol. Nutr. 3(2), 215—218 (1984).
  • Richards DG, Somers S, Issenman RM, Stevenson GW. Cow’s milk protein/soy protein allergy: gastrointestinal imaging. Radiology. 167(3), 721—723 (1988).
  • Chung HL, Hwang JB, Kwon YD, Park MH, Shin WJ, Park JB. Deposition of eosinophil-granule major basic protein and expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in the mucosa of the small intestine in infants with cow’s milk-sensitive enteropathy. J. Allergy Clin. Immunol. 103(6), 1195—1201 (1999).
  • Powell GK, McDonald PJ, Van Sickle GJ, Goldblum RM. Absorption of food protein antigen in infants with food protein-induced enterocolitis. Dig. Dis. Sci. 34(5), 781—788 (1989).
  • Van Sickle GJ, Powell GK, McDonald PJ, Goldblum RM. Milk- and soy protein-induced enterocolitis: evidence for lymphocyte sensitization to specific food proteins. Gastroenterology 88(6), 1915—1921 (1985).
    • The role of T cells in the pathophysiology of FPIES was highlighted for the first time in this paper.
  • Hoffman KM, Ho DG, Sampson HA. Evaluation of the usefulness of lymphocyte proliferation assays in the diagnosis of allergy to cow’s milk. J. Allergy Clin. Immunol. 99(3), 360—366 (1997).
  • Heyman M, Darmon N, Dupont C et al. Mononuclear cells from infants allergic to cow’s milk secrete tumor necrosis factor α altering intestinal function. Gastroenterology 106(6), 1514—1523 (1994).
  • Kapel N, Matarazzo P, Haouchine D et al. Fecal tumor necrosis factor α eosinophil cationic protein and IgE levels in infants with cow’s milk allergy and gastrointestinal manifestations. Clin. Chem. Lab. Med. 37(1), 29—32 (1999).
  • Majamaa H, Aittoniemi J, Miettinen A. Increased concentration of fecal α1-antitrypsin is associated with cow’s milk allergy in infants with atopic eczema. Clin. Exp. Allergy 31(4), 590—592 (2001).
  • Madara JL. Loosening tight junctions. Lessons from the intestine. J. Clin. Invest. 83(4), 1089—1094 (1989).
  • Benlounes N, Dupont C, Candalh C et al. The threshold for immune cell reactivity to milk antigens decreases in cow’s milk allergy with intestinal symptoms. J. Allergy Clin. Immunol. 98(4), 781—789 (1996).
  • Benlounes N, Candalh C, Matarazzo P, Dupont C, Heyman M. The time-course of milk antigen-induced TNF-α secretion differs according to the clinical symptoms in children with cow’s milk allergy. J. Allergy Clin. Immunol. 104(4 Pt 1), 863—869 (1999).
  • Chung HL, Hwang JB, Park JJ, Kim SG. Expression of transforming growth factor β1, transforming growth factor type I and II receptors, and TNF-α in the mucosa of the small intestine in infants with food protein-induced enterocolitis syndrome. J. Allergy Clin. Immunol. 109(1), 150—154 (2002).
    •• The first study to demonstrate TGF-β/TNF-α imbalance in the intestinal mucosa of infants with FPIES.
  • Planchon SM, Martins CA, Guerrant RL, Roche JK. Regulation of intestinal epithelial barrier function by TGF-β 1. Evidence for its role in abrogating the effect of a T cell cytokine. J. Immunol. 153(12), 5730—5739 (1994).
  • Planchon S, Fiocchi C, Takafuji V, Roche JK. Transforming growth factor-β1 preserves epithelial barrier function: identification of receptors, biochemical intermediates, and cytokine antagonists. J. Cell. Physiol. 181(1), 55—66 (1999).
  • Ignotz RA, Massague J. Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 261(9), 4337—4345 (1986).
  • Heino J, Ignotz RA, Hemler ME, Crouse C, Massague J. Regulation of cell adhesion receptors by transforming growth factor-β. Concomitant regulation of integrins that share a common β 1 subunit. J. Biol. Chem. 264(1), 380—388 (1989).
  • Penttila IA, van Spriel AB, Zhang MF et al. Transforming growth factor-β levels in maternal milk and expression in postnatal rat duodenum and ileum. Pediatr. Res. 44(4), 524—531 (1998).
  • Lionetti P, Pazzaglia A, Moriondo M et al. Differing patterns of transforming growth factor-P expression in normal intestinal mucosa and in active celiac disease. J. Pediatr. Gastroenterol. Nutr. 29(3), 308—313 (1999).
  • Mori F, Barni S, Cianferoni A, Pucci N, de Martino M, Novembre E. Cytokine expression in CD3 + cells in an infant with food protein-induced enterocolitis syndrome (FPIES): case report. Clin. Dev. Immunol. 2009, 679381 (2009).
  • Fogg MI, Brown-Whitehorn TA, Pawlowski NA, Spergel JM. Atopy patch test for the diagnosis of food protein-induced enterocolitis syndrome. Pediatr. Allergy Immunol. 17(5), 351—355 (2006).
  • Turjanmaa K, Darsow U, Niggemann B, Rance F, Vanto T, Werfel T. EAACI/GA2LEN position paper: present status of the atopy patch test. Allergy. 61(12), 1377—1384 (2006).
  • Picker LJ, Treer JR, Ferguson-Darnell B, Collins PA, Bergstresser PR, Terstappen LW. Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T cells. J. Immunol. 150(3), 1122—1136 (1993).
  • Kabelitz D, Marischen L, Oberg HH, Holtmeier W, Wesch D. Epithelial defence by γ δ T cells. Int. Arch. Allergy Immunol. 137(1), 73—81 (2005).
  • Guy-Grand D, Vassalli P. Gut intraepithelial lymphocyte development. Curr. Opin. Immunol. 14(2), 255 —259 (2002).
  • Karlsson MR, Rugtveit J, Brandtzaeg P. Allergen-responsive CD4+CD25 + regulatory T cells in children who have outgrown cow’s milk allergy. J. Exp. Med. 199(12), 1679—1688 (2004).
  • Rothenberg ME. Eosinophilic gastrointestinal disorders (EGID). J. Allergy Clin. Immunol. 113(1), 11—28; Quiz 29 (2004).
  • Weller PF. The immunobiology of eosinophils. N. Engl. J. Med. 324(16), 1110—1118 (1991).
  • Gleich GJ, Adolphson CR, Leiferman KM. The biology of the eosinophilic leukocyte. Annu. Rev. Med. 44, 85—101 (1993).
  • Goldstein RA, Paul WE, Metcalfe DD, Busse WW, Reece ER. NIH conference. Asthma. Ann. Intern. Med. 121(9), 698—708 (1994).
  • Dame C, Sutor AH. Primary and secondary thrombocytosis in childhood. Br. J. Haematol. 129(2), 165—177 (2005).
  • Douma S, Zamboulis C, Karagiannis A, Sinakos Z. Effects of adrenaline infusion on serum thromboxane B2 and plasma β-thromboglobulin levels in hypertensive and normotensive subjects. Nouv. Rev. Fr. Hematol. 34(1), 73—78 (1992).
  • Shek LP, Bardina L, Castro R, Sampson HA, Beyer K. Humoral and cellular responses to cow milk proteins in patients with milk-induced IgE-mediated and non-IgE-mediated disorders. Allergy 60(7), 912—919 (2005).
  • Takayama N, Igarashi O, Kweon MN, Kiyono H. Regulatory role of Peyer’s patches for the inhibition of OVA-induced allergic diarrhea. Clin. Immunol. 123(2), 199—208 (2007).
  • Yamada A, Ohshima Y, Yasutomi M et al. Antigen-primed splenic CD8+ T cells impede the development of oral antigen-induced allergic diarrhea. J. Allergy Clin. Immunol. 123(4), 889—894 (2009).
  • Cardoso CR, Teixeira G, Provinciatto PR et al. Modulation of mucosal immunity in a murine model of food-induced intestinal inflammation. Clin. Exp. Allergy 38(2), 338—349 (2008).
  • Cardoso CR, Provinciatto PR, Godoi DF et al. B cells are involved in the modulation of pathogenic gut immune response in food-allergic enteropathy. Clin. Exp. Immunol. 154(2), 153—161 (2008).
  • Cardoso CR, Provinciatto PR, Godoi DF et al. IL-4 regulates susceptibility to intestinal inflammation in murine food allergy. Am. J. Physiol. Gastrointest. Liver Physiol. 296(3), G593—G600 (2009).
  • Hill DJ, Roy N, Heine RG et al.: Effect of a low-allergen maternal diet on colic among breastfed infants: a randomized, controlled trial. Pediatrics 116(5), E709-E715 (2005).
  • Castro-Rodríguez JA, Stern DA, Halonen M et al.: Relation between infantile colic and asthma/atopy: a prospective study in an unselected population. Pediatrics 108(4), 878-882 (2001).
  • Savino F: focus on infantile colic. Acta Paediatr. 96(9), 1259-1264 (2007).
  • Sampson HA: Food allergy. Part 2: diagnosis and management. J. Allergy Clin. Immunol. 103(6), 981-989 (1999).
  • Lack G: Clinical practice. Food allergy. N. Engl. J. Med. 359(12), 1252-1260 (2008)..
  • Knight AK, Bahna SL: Diagnosis of food allergy. Pediatr. Ann. 35(10), 709-714 (2006).
  • Berni Canani R, Ruotolo S, Discepolo V, Troncone R: The diagnosis of food allergy in children. Curr. Opin. Pediatr. 20(5), 584-589 (2008).
  • Ramesh S: Food allergy overview in children. Clin. Rev. Allergy Immunol. 34(2), 217-230 (2008).
  • Bahna SL: Food challenge procedure: optimal choices for clinical practice. Allergy Asthma Proc. 28(6), 640-646 (2007).
  • De Boissieu D, Waguet JC, Dupont C: The atopy patch tests for detection of cow’s milk allergy with digestive symptoms. J. Pediatr. 142(2), 203-205 (2003).
  • Berni Canani R, Ruotolo S, Auricchio L et al.: Diagnostic accuracy of the atopy patch test in children with food allergy-related gastrointestinal symptoms. Allergy 62(7), 738-743 (2007).
  • Spergel JM, Brown-Whitehorn T, Beausoleil JL, Shuker M, Liacouras CA: Predictive values for skin prick test and atopy patch test for eosinophilic esophagitis. J. Allergy Clin. Immunol. 119(2), 509-511 (2007).
  • Mabin DC: A practical guide to diagnosing food intolerance. Curr. Pediatr. 6, 231-236
  • Bischoff S, Crowe SE: Food allergy and the gastrointestinal tract. Curr. Opin. Gastroentero. 20(2), 156-161 (2004).
  • Gonsalves N, Policarpio-Nicolas M, Zhang Q, Rao MS, Hirano I: Histopathologic variability and endoscopic correlates in adults with eosinophilic esophagitis. Gastrointest. Endosc. 64(3), 313-319 (2006).
  • Vandenplas Y, Koletzko S, Isolauri E et al.: Guidelines for the diagnosis and management of cow’s milk protein allergy in infants. Arch. Dis. Child. 92(10), 02-08 (2007).
  • de Boissieu D, Dupont C: Allergy to extensively hydrolyzed cow’s milk proteins in infants: safety and duration of amino acid-based formula. J. Pediatr. 141(2), 271-273 (2002).
  • Spergel JM, Andrews T, Brown-Whitehorn TF, Beausoleil JL, Liacouras CA: Treatment of eosinophilic esophagitis with specific food elimination diet directed by a combination of skin prick and patch tests. Ann. Allergy Asthma Immunol. 95(4), 336-343 (2005).
  • Kagalwalla AF, Sentongo TA, Ritz S et al.: Effect of six-food elimination diet on clinical and histologic outcomes in eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 4(9), 1097-1102 (2006).
  • Niggemann B, Rolinck-Werninghaus C, Mehl A, Binder C, Ziegert M, Beyer K: Controlled oral food challenges in children – when indicated, when superfluous? Allergy 60(7), 865-870 (2005).
  • Niggemann B, Beyer K: Pitfalls in double-blind, placebo-controlled oral food challenges. Allergy 62(7), 729-732 (2007).
  • Venter C, Pereira B, Voigt K et al.: Comparison of open and double-blind placebo-controlled food challenges in diagnosis of food hypersensitivity amongst children. J. Hum. Nutr. Diet. 20(6), 565-579 (2007).
  • Caffarelli C, Petroccione T: False-negative food challenges in children with suspected food allergy. Lancet 358(9296), 1871-1872 (2001).
  • Konikoff MR, Noel RJ, Blanchard C et al.: A randomized, double-blind, placebo controlled trial of fluticasone propionate for pediatric eosinophilic esophagitis. Gastroenterology 131, 1381-1391 (2006).
  • Schwartz DA, Pardi DS, Murray JA: Use of montelukast as steroid-sparing agent for recurrent eosinophilic gastroenteritis. Dig. Dis. Sci. 46(8), 1787-1790 (2001).
  • Sherman, MP and Cox, KL. Neonatal eosinophilic colitis. J Pediatr. 1982; 100: 587–589
  • Hill, SM and Milla, PJ. Colitis caused by food allergy in infants. Arch Dis Child. 1990; 65: 132–133
  • Desreumaux, P, Nutten, S, and Colombel, JF. Activated eosinophils in inflammatory bowel disease: do they matter?. Am J Gastroenterol. 1999; 94: 3396–3398
  • Nishitani, H, Okabayashi, M, Satomi, M, Shimoyama, T, and Dohi, Y. Infiltration of peroxidase-producing eosinophils into the lamina propria of patients with ulcerative colitis. J Gastroenterol. 1998; 33: 189–195
  • Guajardo, JR, Plotnick, LM, Fende, JM, Collins, MH, Putnam, PE, and Rothenberg, ME. Eosinophil-associated gastrointestinal disorders: a world-wide-web based registry. J Pediatr. 2002; 141: 576–581
  • Khan, S and Orenstein, SR. Eosinophilic gastroenteritis: epidemiology, diagnosis and management. Paediatr Drugs. 2002; 4: 563–570
  • Caldwell, JH, Tennerbaum, JI, and Bronstein, HA. Serum IgE to eosinophilic gastroenteritis. N Engl J Med. 1975; 292: 1388–1390
  • Cello, JP. Eosinophilic gastroenteritis: a complex disease entity. Am J Med. 1979; 67: 1097–1114
  • Scudamore, HH, Phillips, SF, Swedlund, HA, and Gleich, GJ. Food allergy manifested by eosinophilia, elevated immunoglobulin E level, and protein-losing enteropathy: The syndrome of allergic gastroenteropathy. J Allergy Clin Immunol. 1982; 70: 129–136
  • Furuta, GT, Ackerman, SJ, and Wershil, BK. The role of the eosinophil in gastrointestinal diseases. Curr Opin Gastroenterol. 1995; 11: 541–547
  • Iacono, G, Carroccio, A, Cavataiio, F et al. Gastroesophageal reflux and cows milk allergy in infants: a prospective study. J Allergy Clin Immunol. 1996; 97: 822–827
  • Sampson, HA. Food Allergy. JAMA. 1997; 278: 1888–1894
  • Walsh, SV, Antonioli, DA, Goldman, H et al. Allergic esophagitis in children: a clinicopathological entity. Am J Surg Pathol. 1999; 23: 390–396
  • Spergel, JM, Beausoleil, JL, Mascarenhas, M, and Liacouras, CA. The use of skin prick tests and patch tests to identify causative foods in eosinophilic esophagitis. J Allergy Clin Immunol. 2002; 109: 363–368
  • Kelly, KJ, Lazenby, AJ, Rowe, PC, Yardley, JH, Perman, JA, and Sampson, HA. Eosinophilic esophagitis attributed to gastroesophageal reflux: improvement with an amino acid-based formula. Gastroenterology. 1995; 109: 1503–1512
  • Oyaizu, N, Uemura, Y, Izumi, H, Morii, S, Nishi, M, and Hioki, K. Eosinophilic gastroenteritis: Immunohistochemical evidence for IgE mast cell-mediated allergy. Acta Pathol Jpn. 1985; 35: 759–766
  • Bischoff, SC. Mucosa allergy: role of mast cells and eosinophil granulocytes in the gut. Baillieres Clin Gastroenterol. 1996; 10: 443–459
  • Sampson, HA. Food allergy. Part 1: immunopathogenesis and clinical disorders. J Allergy Clin Immunol. 1999; 103: 717–728
  • Bates, B. ‘Explosion’ of eosinophilic esophagitis in children. Pediatr News. 2000; 34: 4
  • Weller, PF. The idiopathic hypereosinophilic syndrome. Blood. 1994; 83: 2759–2779
  • Assa’ad, AH, Spicer, RL, Nelson, DP, Zimmermann, N, and Rothenberg, ME. Hypereosinophilic syndromes. Chem Immunol. 2000; 76: 208–229
  • Roufosse, F, Cogan, E, and Goldman, M. The hypereosinophilic syndrome revisited. Annu Rev Med. 2003; 54: 169–184
  • Cools, J, DeAngelo, DJ, Gotlib, J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003; 348: 1201–1214
  • Kulessa, H, Frampton, J, and Graf, T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and eryth-roblasts. Genes Dev. 1995; 9: 1250–1262
  • Yu, C, Cantor, AB, Yang, H et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med. 2002; 195: 1387–1395
  • Hirasawa, R, Shimizu, R, Takahashi, S et al. Essential and instructive roles of GATA factors in eosinophil development. J Exp Med. 2002; 195: 1379–1386
  • Wardlaw, AJ. Molecular basis for selective eosinophil trafficking in asthma: a multistep paradigm. J Allergy Clin Immunol. 1999; 104: 917–926
  • Rothenberg, ME. Eosinophilia. N Engl J Med. 1998; 338: 1592–1600
  • Dent, LA, Strath, M, Mellor, AL, and Sanderson, CJ. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990; 172: 1425–1431
  • Foster, PS, Hogan, SP, Ramsay, AJ, Matthaei, KI, and Young, IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996; 183: 195–201
  • Lee, NA, McGarry, MP, Larson, KA, Horton, MA, Kristensen, AB, and Lee, JJ. Expression of IL-5 in thymocytes/T cells leads to the development of a massive eosinophilia, extramedullary eosinophilopoiesis, and unique histopathologies. J Immunol. 1997; 158: 1332–1344
  • Mishra, A, Hogan, SP, Lee, JJ, Foster, PS, and Rothenberg, ME. Fundamental signals regulate eosinophil homing to the gastrointestinal tract. J Clin Invest. 1999; 103: 1719–1727
  • Mishra, A, Hogan, SP, Brandt, EB, and Rothenberg, ME. An etiological role for aeroallergens and eosinophils in experimental esophagitis. J Clin Invest. 2001; 107: 83–90
  • Rothenberg, ME. Eotaxin. An essential mediator of eosinophil trafficking into mucosa tissues. Am J Respir Cell Mol Biol. 1999; 21: 291–295
  • Silberstein, DS. Eosinophil function in health and disease. Crit Rev Oncol Hematol. 1995; 19: 47–77
  • Bochner, BS and Schleimer, RP. Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol Rev. 2001; 179: 5–15
  • Jose, PJ, Griffiths-Johnson, DA, Collins, PD et al. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med. 1994; 179: 881–887
  • Matthews, AN, Friend, DS, Zimmermann, N et al. Eotaxin is required for the baseline level of tissue eosinophils. Proc Natl Acad Sci U S A. 1998; 95: 6273–6278
  • Hogan, SP, Mishra, A, Brandt, EB et al. A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nat Immunol. 2001; 2: 353–360
  • Resnick, MB and Weller, PF. Mechanisms of eosinophil recruitment. Am J Respir Cell Mol Biol. 1993; 8: 349–355
  • Bochner, BS. Road signs guiding leukocytes along the inflammation superhighway. J Allergy Clin Immunol. 2000; 106: 817–828
  • Tachimoto, H, Ebisawa, M, and Bochner, BS. Cross-talk between integrins and chemokines that influences eosinophil adhesion and migration. Int Arch Allergy Immunol. 2002; 128: 18–20
  • Broide, D and Sriramarao, P. Eosinophil trafficking to sites of allergic inflammation. Immunol Rev. 2001; 179: 163–172
  • Shaw, SK and Brenner, MB. The beta 7 integrins in mucosal homing and retention. Semin Immunol. 1995; 7: 335–342
  • Butcher, EC, Williams, M, Youngman, K, Rott, L, and Briskin, M. Lymphocyte trafficking and regional immunity. Adv Immunol. 1999; 72: 209–253
  • Gurish, MF, Tao, H, Abonia, JP et al. Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing. J Exp Med. 2001; 194: 1243–1252
  • Sandborn, WJ and Targan, SR. Biologic therapy of inflammatory bowel disease. Gastroenterology. 2002; 122: 1592–1608
  • von Andrian, UH and Engelhardt, B. Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med. 2003; 348: 68–72
  • Kitayama, J, Fuhlbrigge, RC, Puri, KD, and Springer, TA. P-selectin, L-selectin, and alpha 4 integrin have distinct roles in eosinophil tethering and arrest on vascular endothelial cells under physiological flow conditions. J Immunol. 1997; 159: 3929–3939
  • Artis, D, Humphreys, NE, Potten, CS et al. Beta7 integrin-deficient mice: delayed leukocyte recruitment and attenuated protective immunity in the small intestine during enteric helminthic infection. Eur J Immunol. 2000; 30: 1656–1664
  • Ghosh, S, Goldin, E, Gordon, FH et al. Natalizumab for active Crohn’s disease. N Engl J Med. 2003; 348: 24–32
  • Mishra, A, Hogan, SP, Brandt, EB et al. Enterocyte expression of the eotaxin and interleukin-5 transgenes induces compartmentalized dysregulation of eosinophil trafficking. J Biol Chem. 2002; 277: 4406–4412
  • Rothenberg, ME. CD44 a sticky target for asthma. J Clin Invest. 2003; 111: 1460–1462
  • Floyd, H, Ni, J, Cornish, AL et al. Siglec-8. A novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem. 2000; 275: 861–866
  • Kikly, KK, Bochner, BS, Freeman, SD et al. Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. J Allergy Clin Immunol. 2000; 105: 1093–1100
  • Rothenberg, ME, Luster, AD, Lilly, CM, Drazen, JM, and Leder, P. Constitutive and allergen-induced expression of eotaxin mRNA in the guinea pig lung. J Exp Med. 1995; 181: 1211–1216
  • Rothenberg, ME, Luster, AD, and Leder, P. Murine eotaxin: an eosinophil chemoattractant inducible in endothelial cells and in interleukin 4-induced tumor suppression. Proc Natl Acad Sci U S A. 1995; 92: 8960–8964
  • Garcia-Zepeda, EA, Rothenberg, ME, Ownbey, RT, Celestin, J, Leder, P, and Luster, AD. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med. 1996; 2: 449–456
  • Ponath, PD, Qin, SX, Ringler, DJ et al. Cloning of the human eosinophil chemoattractant, eotaxin expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J Clin Invest. 1996; 97: 604–612
  • Luster, AD and Rothenberg, ME. Role of monocyte chemoattractant protein and eotaxin subfamily of chemokines in allergic inflammation. J Leukoc Biol. 1997; 62: 620–633
  • Patel, VP, Kreider, BL, Li, Y et al. Molecular and functional characterization of two novel human C-C chemokines as inhibitors of two distinct classes of myeloid progenitors. J Exp Med. 1997; 185: 1163–1172
  • Forssmann, U, Uguccioni, M, Loetscher, P et al. Eotaxin-2, a novel CC chemokine that is selective for the chemokine receptor CCR3, and acts like eotaxin on human eosinophil and basophil leukocytes. J Exp Med. 1997; 185: 2171–2176
  • Shinkai, A, Yoshisue, H, Koike, M et al. A novel human CC chemokine, eotaxin-3, which is expressed in IL-4- stimulated vascular endothelial cells, exhibits potent activity toward eosinophils. J Immunol. 1999; 163: 1602–1610
  • Kitaura, M, Suzuki, N, Imai, T et al. Molecular cloning of a novel human CC chemokine (Eotaxin-3) that is a functional ligand of CC chemokine receptor 3. J Biol Chem. 1999; 274: 27975–27980
  • Zimmermann, N, Hogan, SP, Mishra, A et al. Murine eotaxin-2: a constitutive eosinophil chemokine induced by allergen challenge and IL-4 overexpression. J Immunol. 2000; 165: 5839–5846
  • Nomiyama, H, Osborne, LR, Imai, T et al. Assignment of the human CC chemokine MPIF-2/eotaxin-2 (SCYA24) to chromosome 7q11.23. Genomics. 1998; 49: 339–340
  • Combadiere, C, Ahuja, SK, and Murphy, PM. Cloning and functional expression of a human eosinophil CC chemokine receptor. J Biol Chem. 1995; 270: 16491–16494
  • Ponath, PD, Qin, S, Post, TW et al. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med. 1996; 183: 2437–2448
  • Daugherty, BL, Siciliano, SJ, DeMartino, JA, Malkowitz, L, Sirotina, A, and Springer, MS. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med. 1996; 183: 2349–2354
  • Bertrand, CP and Ponath, PD. CCR3 blockade as a new therapy for asthma. Expert Opin Investig Drugs. 2000; 9: 43–52
  • Zimmermann, N, Hershey, GK, Foster, PS, and Rothenberg, ME. Chemokines in asthma: cooperative interaction between chemokines and IL-13. J Allergy Clin Immunol. 2003; 111: 227–242
  • Sallusto, F, Mackay, CR, and Lanzavecchia, A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science. 1997; 277: 2005–2007
  • Uguccioni, M, Mackay, CR, Ochensberger, B et al. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest. 1997; 100: 1137–1143
  • Gerber, BO, Zanni, MP, Uguccioni, M et al. Functional expression of the eotaxin receptor CCR3 in T lymphocytes co-localizing with eosinophils. Curr Biol. 1997; 7: 836–843
  • Stellato, C, Brummet, ME, Plitt, JR, Shahabuddin, S, Baroody, FM, Liu, MC et al. Expression of the C-C chemokine receptor CCR3 in human airway epithelial cells. J Immunol. 2001; 166: 1457–1461
  • Beaulieu, S, Robbiani, DF, Du, X et al. Expression of a functional eotaxin (CC chemokine ligand 11) receptor CCR3 by human dendritic cells. J Immunol. 2002; 169: 2925–2936
  • Romagnani, P, De Paulis, A, Beltrame, C et al. Tryptase-chymase double-positive human mast cells express the eotaxin receptor CCR3 and are attracted by CCR3-binding chemokines. Am J Pathol. 1999; 155: 1195–1204
  • Price, KS, Friend, DS, Mellor, EA, De Jesus, N, Watts, GF, and Boyce, JA. CC chemokine receptor 3 mobilizes to the surface of human mast cells and potentiates immunoglobulin E-dependent generation of interleukin 13. Am J Respir Cell Mol Biol. 2003; 28: 420–427
  • Mattes, J, Yang, M, Mahalingam, S et al. Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J Exp Med. 2002; 195: 1433–1444
  • Hogan, SP, Mishra, A, Brandt, EB, Foster, PS, and Rothenberg, ME. A critical role for eotaxin in experimental oral antigen-induced eosinophilic gastrointestinal allergy. Proc Natl Acad Sci U S A. 2000; 97: 6681–6686
  • Gurish, MF, Humbles, A, Tao, H et al. CCR3 is required for tissue eosinophilia and larval cytotoxicity after infection with Trichinella spiralis. J Immunol. 2002; 168: 5730–5736
  • Ma, W, Bryce, PJ, Humbles, AA et al. CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation. J Clin Invest. 2002; 109: 621–628
  • Humbles, AA, Lu, B, Friend, DS et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci U S A. 2002; 99: 1479–1484
  • Lamkhioued, B, Renzi, PM, Abi-Younes, S et al. Increased expression of eotaxin in bronchoalveolar lavage and airways of asthmatics contributes to the chemotaxis of eosinophils to the site of inflammation. J Immunol. 1997; 159: 4593–4601
  • Lilly, CM, Nakamura, H, Belostotsky, OI et al. Eotaxin expression after segmental allergen challenge in subjects with atopic asthma. Am J Respir Crit Care Med. 2001; 163: 1669–1675
  • Ying, S, Meng, Q, Zeibecoglou, K et al. Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (intrinsic) asthmatics. J Immunol. 1999; 163: 6321–6329
  • Ying, S, Robinson, DS, Meng, Q et al. C-C chemokines in allergen-induced late-phase cutaneous responses in atopic subjects: association of eotaxin with early 6-hour eosinophils, and of eotaxin-2 and monocyte chemoattractant protein-4 with the later 24-hour tissue eosinophilia, and relationship to basophils and other C-C chemokines (monocyte chemoattractant protein-3 and RANTES). J Immunol. 1999; 163: 3976–3984
  • Berkman, N, Ohnona, S, Chung, FK, and Breuer, R. Eotaxin-3 but not eotaxin gene expression is upregulated in asthmatics 24 hours after allergen challenge. Am J Respir Cell Mol Biol. 2001; 24: 682–687
  • Nakamura, H, Luster, AD, Nakamura, T et al. Variant eotaxin: its effects on the asthma phenotype. J Allergy Clin Immunol. 2001; 108: 946–953
  • Menzies-Gow, A, Ying, S, Sabroe, I et al. Eotaxin (CCL11) and eotaxin-2 (CCL24) induce recruitment of eosinophils, basophils, neutrophils, and macrophages as well as features of early- and late-phase allergic reactions following cutaneous injection in human atopic and nonatopic volunteers. J Immunol. 2002; 169: 2712–2718
  • Sabroe, I, Peck, MJ, Van Keulen, BJ et al. A small molecule antagonist of chemokine receptors CCR1 and CCR3. Potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry. J Biol Chem. 2000; 275: 25985–25992
  • Pereira, S, Taylor-Clark, T, Darby, Y, Powell, J, Howarth, P, and Scadding, G. Effects of anti-eotaxin monoclonal antibody CAT-213 on allergen-induced rhinitis. J Allergy Clin Immunol. 2003; 111: S268
  • Salib, R, Salagean, M, Lau, L et al. The anti-inflammatory response of anti-eotaxin monoclonal antibody CAT-213 on nasal allergen-induced cell infiltration and activation. J Allergy Clin Immunol. 2003; 111: S347
  • Kato, M, Kephart, GM, Talley, NJ et al. Eosinophil infiltration and degranulation in normal human tissue. Anat Rec. 1998; 252: 418–425
  • Butterworth, AE. The eosinophil and its role in immunity to helminth infection. Curr Topics Microbiol Immunol. 1977; 77: 127–168
  • Butterworth, AE. Cell-mediated damage to helminths. Adv Parasitol. 1984; 23: 143–235
  • Behm, CA and Ovington, KS. The role of eosinophils in parasitic helminth infections: insights from genetically modified mice. Parasitol Today. 2000; 16: 202–209
  • Lucey, DR, Nicholson, WA, and Weller, PF. Mature human eosinophils have the capacity to express HLA-DR. Proc Natl Acad Sci U S A. 1989; 86: 1348–1351
  • Woerly, G, Roger, N, Loiseau, S, Dombrowicz, D, Capron, A, and Capron, M. Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (Interleukin 2 and interferon gamma). Inhibition by immunoglobulin A complexes. J Exp Med. 1999; 190: 487–496
  • Shi, HZ, Humbles, A, Gerard, C, Jin, Z, and Weller, PF. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest. 2000; 105: 945–953
  • Pinto, A, Aldinucci, D, Gloghini, A et al. The role of eosinophils in the pathobiology of Hodgkin’s disease. Ann Oncol. 1997; 2: 89–96
  • Pinto, A, Aldinucci, D, Gloghini, A et al. Human eosinophils express functional CD30 ligand and stimulate proliferation of a Hodgkin’s disease cell line. Blood. 1996; 88: 3299–3305
  • Throsby, M, Herbelin, A, Pleau, JM, and Dardenne, M. CD11c+ eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion. J Immunol. 2000; 165: 1965–1975
  • Gouon-Evans, V, Rothenberg, ME, and Pollard, JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000; 127: 2269–2282
  • Hornung, D, Dohrn, K, Sotlar, K et al. Localization in tissues and secretion of eotaxin by cells from normal endometrium and endometriosis. J Clin Endocrinol Metab. 2000; 85: 2604–2608
  • Salamonsen, LA and Lathbury, LJ. Endometrial leukocytes and menstruation. Hum Reprod Update. 2000; 6: 16–27
  • Zhang, J, Lathbury, LJ, and Salamonsen, LA. Expression of the chemokine eotaxin and its receptor, CCR3, in human endometrium. Biol Reprod. 2000; 62: 404–411
  • Gleich, GJ, Frigas, E, Loegering, DA, Wassom, DL, and Steinmuller, D. Cytotoxic properties of the eosinophil major basic protein. J Immunol. 1979; 123: 2925–2927
  • Gleich, GJ. Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol. 2000; 105: 651–663
  • Slifman, NR, Loegering, DA, McKean, DJ, and Gleich, GJ. Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol. 1986; 137: 2913–2917
  • Rosenberg, HF, Dyer, KD, Tiffany, HL, and Gonzalez, M. Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet. 1995; 10: 219–223
  • Young, JD, Peterson, CG, Venge, P, and Cohn, ZA. Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature. 1986; 321: 613–616
  • Jacoby, DB, Gleich, GJ, and Fryer, AD. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J Clin Invest. 1993; 91: 1314–1318
  • Kita, H. The eosinophil: a cytokine-producing cell?. J Allergy Clin Immunol. 1996; 97: 889–892
  • Gharaee-Kermani, M and Phan, SH. The role of eosinophils in pulmonary fibrosis. Int J Mol Med. 1998; 1: 43–53
  • Phipps, S, Ying, S, Wangoo, A, Ong, YE, Levi-Schaffer, F, and Kay, AB. The relationship between allergen-induced tissue eosinophilia and markers of repair and remodeling in human atopic skin. J Immunol. 2002; 169: 4604–4612
  • Lacy, P, Levi-Schaffer, F, Mahmudi-Azer, S et al. Intracellular localization of interleukin-6 in eosinophils from atopic asthmatics and effects of interferon gamma. Blood. 1998; 91: 2508–2516
  • Lewis, RA, Austen, KF, and Soberman, RJ. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med. 1990; 323: 645–655
  • Talley, NJ, Shorter, RG, Phillips, SF, and Zinsmeister, AR. Eosinophilic gastroenteritis: a clinicopathological study of patients with disease of the mucosa, muscle layer, and subserosal tissues. Gut. 1990; 31: 54–58
  • Tajima, K and Katagiri, T. Deposits of eosinophil granule proteins in eosinophilic cholecystitis and eosinophilic colitis associated with hypereosinophilic syndrome. Dig Dis Sci. 1996; 41: 282–288
  • Desreumaux, P, Bloget, F, Seguy, D et al. Interleukin 3, granulocyte-macrophage colony-stimulating factor, and interleukin 5 in eosinophilic gastroenteritis. Gastroenterology. 1996; 110: 768–774
  • Klein, NC, Hargrove, RL, Sleisenger, MH, and Jeffries, GH. Eosinophilic gastroenteritis. Medicine (Baltimore). 1970; 49: 299–319
  • Walker, NI, Croese, J, Clouston, AD, Parry, M, Loukas, A, and Prociv, P. Eosinophilic enteritis in northeastern Australia. Pathology, association with Ancylostoma caninum, and implications. Am J Surg Pathol. 1995; 19: 328–337
  • Al Samman, M, Haque, S, and Long, JD. Strongyloidiasis colitis: a case report and review of the literature. J Clin Gastroenterol. 1999; 28: 77–80
  • Lee, JH, Rhee, PL, Kim, JJ et al. The role of mucosa biopsy in the diagnosis of chronic diarrhea: value of multiple biopsies when colonoscopic finding is normal or nonspecific. Korean J Intern Med. 1997; 12: 182–187
  • Anderson, RE and Hardy, WR. Hypereosinophilia. Ann Intern Med. 1968; 69: 1331–1332
  • Chusid, MJ, Dale, DC, West, BC, and Wolff, SM. The hypereosinophilic syndrome: analysis of fourteen cases with review of the literature. Medicine (Baltimore). 1975; 54: 1–27
  • Simon, HU, Plotz, SG, Dummer, R, and Blaser, K. Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N Engl J Med. 1999; 341: 1112–1120
  • Cortes, J, Ault, P, Koller, C et al. Efficacy of imatinib mesylate in the treatment of idiopathic hypereosinophilic syndrome. Blood. 2003; 101: 4714–4716
  • Schaller, JL and Burkland, GA. Case report: rapid and complete control of idiopathic hypereosinophilia with imatinib mesylate. MedGenMed [online]. 2001; 3: 1 ((6pp). Available at http://www.Medscape.com.)
  • Ault, P, Cortes, J, Koller, C, Kaled, ES, and Kantarjian, H. Response of idiopathic hypereosinophilic syndrome to treatment with imatinib mesylate. Leukoc Res. 2002; 26: 881–884
  • Gleich, GJ, Leiferman, KM, Pardanani, A, Tefferi, A, and Butterfield, JH. Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet. 2002; 359: 1577–1578
  • Griffin, JH, Leung, J, Bruner, RJ, Caligiuri, MA, and Briesewitz, R. Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci U S A. 2003; 100: 7830–7835
  • Klion, AD, Noel, P, Akin, C et al. Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood. 2003; 101: 4660–4666
  • Klion, AD, Robyn, JA, Akin, C et al. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood. 2003;
  • Yoshida, T, Naganuma, T, Niizawa, M, Kakizaki, Y, Zeniya, A, and Masamune, O. [A case of eosinophilic gastroenteritis accompanied by perimyo-carditis, which was strongly suspected]. Nippon Shokakibyo Gakkai Zasshi. 1995; 92: 1183–1188
  • Hussain, A, Brown, PJ, Thwaites, BC, and Hastings, AG. Eosinophilic endomyocardial disease due to high grade chest wall sarcoma. Thorax. 1994; 49: 1040–1041
  • Andy, JJ, Ogunowo, PO, Akpan, NA, Odigwe, CO, Ekanem, IA, and Esin, RA. Helminth associated hypereosinophilia and tropical endomyocardial fibrosis (EMF) in Nigeria. Acta Trop. 1998; 69: 127–140
  • Ahmad, M, Soetikno, RM, and Ahmed, A. The differential diagnosis of eosinophilic esophagitis. J Clin Gastroenterol. 2000; 30: 242–244
  • Mishra, A and Rothenberg, ME. Intratracheal IL–13 induces eosinophilic esophagitis by an IL-5, eotaxin-1, and STAT6-dependent mechanism1. Gastroenterology. 2003; 125: 1419–1427
  • Straumann, A, Bauer, M, Fischer, B, Blaser, K, and Simon, HU. Idiopathic eosinophilic esophagitis is associated with a T(H)2-type allergic inflammatory response. J Allergy Clin Immunol. 2001; 108: 954–961
  • Mishra, A, Hogan, SP, Brandt, EB, and Rothenberg, ME. IL-5 promotes eosinophil trafficking to the esophagus. J Immunol. 2002; 168: 2464–2469
  • Khoshoo, V, Schantz, P, Craver, R, Stern, GM, Loukas, A, and Prociv, P. Dog hookworm: a cause of eosinophilic enterocolitis in humans. J Pediatr Gastroenterol Nutr. 1994; 19: 448–452
  • Machida, HM, Catto Smith, AG, Gall, DG, Trevenen, C, and Scott, RB. Allergic colitis in infancy: clinical and pathologic aspects. J Pediatr Gastroenterol Nutr. 1994; 19: 22–26
  • Chang, JW, Wu, TC, Wang, KS, Huang, IF, Huang, B, and Yu, IT. Colon mucosa pathology in infants under three months of age with diarrhea disorders. J Pediatr Gastroenterol Nutr. 2002; 35: 387–390
  • Van Sickle, GJ, Powell, GK, McDonald, PJ, and Goldblum, RM. Milk- and soy protein-induced enterocolitis: evidence for lymphocyte sensitization to specific food proteins. Gastroenterology. 1985; 88: 1915–1921
  • Kweon, MN, Yamamoto, M, Kajiki, M, Takahashi, I, and Kiyono, H. Systemically derived large intestinal CD4(+) Th2 cells play a central role in STAT6-mediated allergic diarrhea. J Clin Invest. 2000; 106: 199–206
  • Garrett, JK, Jameson, SC, Thompson, B et al. Anti–IL-5 (mepolizumab) therapy for hypereosinophilic syndromes. J Allergy Clin Immunol. 2004; 113: 115–119
  • Pardanani, A, Elliott, M, Reeder, T et al. Imatinib for systemic mast-cell disease. Lancet. 2003; 362: 535–536
  • Orenstein, SR, Shalaby, TM, Di Lorenzo, C, Putnam, PE, Sigurdsson, L, and Kocoshis, SA. The spectrum of pediatric eosinophilic esophagitis beyond infancy: a clinical series of 30 children. Am J Gastroenterol. 2000; 95: 1422–1430
  • Ruchelli, E, Wenner, W, Voytek, T, Brown, K, and Liacouras, C. Severity of esophageal eosinophilia predicts response to conventional gastro-esophageal reflux therapy. Pediatr Dev Pathol. 1999; 2: 15–18
  • Attwood, SE, Smyrk, TC, Demeester, TR, and Jones, JB. Esophageal eosinophilia with dysphagia. A distinct clinicopathologic syndrome. Dig Dis Sci. 1993; 38: 109–116
  • Tottrup, A, Fredens, K, Funch-Jensen, P, Aggestrup, S, and Dahl, R. Eosinophil infiltration in primary esophageal achalasia. A possible pathogenic role. Dig Dis Sci. 1989; 34: 1894–1899
  • Fox, VL, Nurko, S, Teitelbaum, JE, Badizadegan, K, and Furuta, GT. High-resolution EUS in children with eosinophilic esophagitis. Gastrointest Endosc. 2003; 57: 30–36
  • Fox, VL. Pediatric endoscopy. Gastrointest Endosc Clin N Am. 2000; 10: 175–194
  • Faubion, WA Jr, Perrault, J, Burgart, LJ, Zein, NN, Clawson, M, and Freese, DK. Treatment of eosinophilic esophagitis with inhaled cortico-steroids. J Pediatr Gastroenterol Nutr. 1998; 27: 90–93
  • Teitelbaum, JE, Fox, VL, Twarog, FJ et al. Eosinophilic esophagitis in children: immunopathological analysis and response to fluticasone propionate. Gastroenterology. 2002; 122: 1216–1225
  • Grove, A, Allam, C, McFarlane, LC, McPhate, G, Jackson, CM, and Lipworth, BJ. A comparison of the systemic bioactivity of inhaled budesonide and fluticasone propionate in normal subjects. Br J Clin Pharmacol. 1994; 38: 527–532
  • Katz, AJ, Twarog, FJ, Zeiger, RS, and Falchuk, ZM. Milk-sensitive and eosinophilic gastroenteropathy: similar clinical features with contrasting mechanisms and clinical course. J Allergy Clin Immunol. 1984; 74: 72–78
  • Bauer, S, Schaub, N, Dommann-Scherrer, CC, Zimmermann, DR, Simon, HU, and Wegmann, W. Long-term outcome of idiopathic hypereosinophilic syndrome transition to eosinophilic gastroenteritis and clonal expansion of T-cells. Eur J Gastroenterol Hepatol. 1996; 8: 181–185
  • Jaffe, JS, James, SP, Mullins, GE, Braun-Elwert, L, Lubensky, I, and Metcalfe, DD. Evidence for an abnormal profile of interleukin-4 (IL-4), IL-5, and gamma-interferon (gamma-IFN) in peripheral blood T cells from patients with allergic eosinophilic gastroenteritis. J Clin Immunol. 1994; 14: 299–309
  • Lake, AM. Food-induced eosinophilic proctocolitis. J Pediatr Gastroenterol Nutr. 2000; 30: S58–S60
  • Dvorak, AM, Onderdonk, AB, McLeod, RS et al. Ultrastructural identification of exocytosis of granules from human gut eosinophils in vivo. Int Arch Allergy Immunol. 1993; 102: 33–45
  • Brandt, EB, Strait, RT, Hershko, D et al. Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest. 2003; 112: 1666–1677
  • Beyer, K, Castro, R, Birnbaum, A, Benkov, K, Pittman, N, and Sampson, HA. Human milk-specific mucosal lymphocytes of the gastrointestinal tract display a TH2 cytokine profile. J Allergy Clin Immunol. 2002; 109: 707–713
  • Leung, VK, Liew, CT, and Sung, JJ. Fatal strongyloidiasis in a patient with ulcerative colitis after corticosteroid therapy. Am J Gastroenterol. 1997; 92: 1383–1384
  • Kelly, KJ. Eosinophilic gastroenteritis. J Pediatr Gastroenterol Nutr. 2000; 30: S28–S35
  • Talley, NJ, Kephart, GM, McGovern, TW, Carpenter, HA, and Gleich, GJ. Deposition of eosinophil granule major basic protein in eosinophilic gastroenteritis and celiac disease. Gastroenterology. 1992; 103: 137–145
  • Justinich, C, Katz, A, Gurbindo, C et al. Elemental diet improves steroid-dependent eosinophilic gastroenteritis and reverses growth failure. J Pediatr Gastroenterol Nutr. 1996; 23: 81–85
  • Guajardo, JR and Rothenberg, ME. Eosinophilic esophagitis, gastroenteritis, gastroenterocolitis, and colitis. in: DD Metcalfe, HA Sampson, RA Simon (Eds.) Food allergy: adverse reactions to foods and additives. 3rd ed. Blackwell Publishing, Malden (MA); 2003: 217–226
  • Liu, LX, Chi, J, Upton, MP, and Ash, LR. Eosinophilic colitis associated with larvae of the pinworm Enterobius vermicularis. Lancet. 1995; 346: 410–412
  • Walzer, M. Allergy of the abdominal organs. J Lab Clin Med. 1941; 26: 1867–1877
  • Sudo, N., Sawamura, S., Tanaka, K., Aiba, Y., Kubo, C., and Koga, Y. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol. 1997; 159: 1739–1745
  • Bashir, M.E., Louie, S., Shi, H.N., and Nagler-Anderson, C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol. 2004; 172: 6978–6987
  • Prescott, S.L. and Bjorksten, B. Probiotics for the prevention or treatment of allergic diseases. J Allergy Clin Immunol. 2007; 120: 255–262
  • Blazquez, A.B. and Berin, M.C. Gastrointestinal dendritic cells promote Th2 skewing via OX40L. J Immunol. 2008; 180: 4441–4450
  • Supported by

    www.allergycliniconline.com

    ALLERGY ONLINE CLINIC FOR CHILDREN, TEEN AND ADULT Yudhasmara Foundation www.allergycliniconline.com GROW UP CLINIC I JL Taman Bendungan Asahan 5 Jakarta Pusat, Jakarta Indonesia 10210 Phone : (021) 5703646 – 44466102 GROW UP CLINIC II MENTENG SQUARE Jl Matraman 30 Jakarta Pusat 10430 phone 44466103 – 29614252 http://growupclinic.com http://www.facebook.com/GrowUpClinic Creating-hashtag-on-twitter@growupclinic Working together support to health of all by clinical practice, research and educations. Advancing of the future pediatric and future parenting to optimalized physical, mental and social health and well being for fetal, newborn, infant, children, adolescents and young adult
    “GRoW UP CLINIC” Jakarta Focus and Interest on: ***Allergy Clinic Online *** Picky Eaters and Growup Clinic For Children, Teen and Adult (Klinik Khusus Gangguan Sulit Makan dan Gangguan Kenaikkan Berat Badan)*** Children Foot Clinic *** Physical Medicine and Rehabilitation Clinic *** Oral Motor Disorders and Speech Clinic *** Children Sleep Clinic *** Pain Management Clinic Jakarta *** Autism Clinic *** Children Behaviour Clinic *** Motoric & Sensory Processing Disorders Clinic *** NICU – Premature Follow up Clinic *** Lactation and Breastfeeding Clinic *** Swimming Spa Baby & Medicine Massage Therapy For Baby, Children and Teen ***
    Professional Healthcare Provider “GRoW UP CLINIC” Dr Narulita Dewi SpKFR, Physical Medicine & Rehabilitation curriculum vitae HP 085777227790 PIN BB 235CF967 Clinical – Editor in Chief : Dr Widodo Judarwanto, Pediatrician Editor: Audi Yudhasmara email : judarwanto@gmail.com Mobile Phone O8567805533 PIN BBM 76211048 Komunikasi dan Konsultasi online : twitter @widojudarwanto facebook dr Widodo Judarwanto, pediatrician Komunikasi dan Konsultasi Online Alergi Anak : Allergy Clinic Online Komunikasi dan Konsultasi Online Sulit makan dan Gangguan Berat Badan : Picky Eaters Clinic Komunikasi Profesional Pediatric: Indonesia Pediatrician Online

    Curriculum Vitae Widodo Judarwanto
    Information on this web site is provided for informational purposes only and is not a substitute for professional medical advice. You should not use the information on this web site for diagnosing or treating a medical or health condition. You should carefully read all product packaging. If you have or suspect you have a medical problem, promptly contact your professional healthcare provider

    Copyright © 2014, Allergy Clinic Online Information Education Network. All rights reserved

    Tinggalkan Balasan

    Isikan data di bawah atau klik salah satu ikon untuk log in:

    Logo WordPress.com

    You are commenting using your WordPress.com account. Logout / Ubah )

    Gambar Twitter

    You are commenting using your Twitter account. Logout / Ubah )

    Foto Facebook

    You are commenting using your Facebook account. Logout / Ubah )

    Foto Google+

    You are commenting using your Google+ account. Logout / Ubah )

    Connecting to %s